Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Thermal characteristics analysis and experimental study on high speed spindle system
MA Chi, YANG Jun, ZHAO Liang, MEI Xue song, SHI Hu, WANG Xin meng
State Key Laboratory for Manufacturing Systems Engineering,Xian Jiaotong University,Xi'an 710049, China
Download:   PDF(2800KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A three dimensional finite element analysis (FEA) model was proposed to conduct transient thermal structure interactive analysis of high speed spindle systems in order to avoid the degeneration of high speed spindles machining accuracy in actual machining caused by an excessive temperature rise at the design stage. However,  thermal contact conductance (TCC) was often ignored in traditional thermal models of high speed spindles. Which caused inaccuracies in traditional thermal models. The FEA model considered TCC to improve the accuracy of traditional thermal models. The Weierstrass Mandelbrot function was used to characterize the rough surface morphology of bearing rings. The fractal parameters were identified by combing the power spectrum method with the measurement data of bearing rings surface morphology. And a contact mechanics model was proposed to calculate the contact parameters used in the modeling of TCC. Then, an integrated geometry mechanical thermal model for TCC was proposed, which effectively avoided the inaccuracies of statistical methods and the poor generality of experimental measurements. The heat generation of the built in motor and rolling bearing was calculated based on the efficiency analysis method and quasi static mechanics analysis, respectively. According to the Reynolds number, the flow status of the fluid was determined, and the convective heat transfer coefficients of spindle components were calculated based on the Nusselt number. The above boundary conditions were applied to the FEA model, and thermal characteristics experiments were conducted to demonstrate the validity of the FEA model. The results show that the simulation precision of  the FEA model is superior to that of the traditional thermal properly analysis models which ignor TCC.



Published: 01 November 2015
CLC:  TH161  
  TG 532  
Cite this article:

MA Chi, YANG Jun, ZHAO Liang, MEI Xue song, SHI Hu, WANG Xin meng. Thermal characteristics analysis and experimental study on high speed spindle system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(11): 2092-2102.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008 973X.2015.11.009     OR     http://www.zjujournals.com/eng/Y2015/V49/I11/2092


高速主轴系统热特性分析与实验

为了在设计阶段避免高速主轴在实际加工中由于温升过高可能会引起加工精度降低的问题,构建高速主轴的三维有限元模型(FEA)进行瞬态热 结构耦合分析.但传统热特性分析模型中,没有考虑结合面间接触热导致仿真精度较低,该有限元模型考虑接触热导对仿真结果的影响.利用Weierstrass Mandelbrot函数表征轴承表面的粗糙形貌,利用功率谱法与粗糙表面形貌数据对分形参数进行辨识,并提出接触力学模型以计算用于接触热导建模的接触参数.最终,提出几何 力学 热综合预测模型计算结合面间的接触热导,有效避免统计学方法的不准确性与实验测量法通用性不强的缺陷.利用电机效率分析与轴承拟静力学分析法,分别求解电机与轴承热功率.由雷诺数判定流体的流动状态,并依据努塞尔数计算主轴部件的对流换热系数.将上述边界条件施加到该有限元模型对温度场与热变形进行仿真,并进行热特性实验验证该有限元模型的有效性.结果表明,该有限元模型的仿真精度明显优于不考虑接触热导的热特性分析模型.

[1] MAYR J, JEDRZEJEWSKI J, UHLMANN E, et al. Thermal issues in machine tools [J]. CIRP Annals Manufacturing Technology, 2012, 61(2): 771-791.
[2] ABELE E, ALTINTAS Y, BRECHER C. Machine tool spindle units [J]. CIRP Annals Manufacturing Technology, 2010, 59(2): 781-802.
[3] 杨军, 梅雪松, 赵亮, 等. 基于模糊聚类测点优化与向量机的坐标镗床热误差建模[J]. 上海交通大学学报, 2014, 8: 1175-1182.
YANG Jun, MEI Xue song, ZHAO Liang, et al. Thermal error modeling of jig borer based on fuzzy clustering and support vector machine [J]. Journal of Shanghai Jiaotong University, 2014,8: 1175-182.
[4] YANG J, SHI H, FENG B, et al. Applying neural network based on fuzzy cluster pre processing to thermal error modeling for coordinate boring machine [J]. Procedia CIRP, 2014, 17: 698-703.
[5] 杨军, 梅雪松, 冯斌, 等. 时序分析在电主轴热误差建模中的应用[J]. 计算机集成制造系统, 2014(1):10-18.
YANG Jun, MEI Xue song, FENG Bin, et al. Application of time series in the thermal error modeling of high speed spindle system [J]. Computer integrated manufacturing system, 2014(1): 10-18.
[6] 杨军, 施虎, 梅雪松, 等. 双驱伺服进给系统热误差的试验测量与预测模型构建 [J]. 西安交通大学学报, 2013, 47(11): 53-59.
YANG Jun, SHI Hu, MEI Xue song, et al. Prediction model construction and experimental measurement of the thermal error of dual servo feed drive system [J]. Journal of Xian Jiaotong University, 2013,47(11): 53-59.
[7] BOSSMANNS B, TU J F A thermal model for high speed motorized spindles [J]. International Journal of Machine Tools and Manufacture, 1999, 39(9): 1345-1366.
[8] ZHAO H, YANG J, Shen J. Simulation of thermal behavior of a CNC machine tool spindle [J]. International Journal of Machine Tools and Manufacture, 2007, 47(6): 1003-1010.
[9] CREIGHTON E, HONEGGER A, TULSIAN A, et al. Analysis of thermal errors in a high speed micro milling spindle [J]. International Journal of Machine Tools and Manufacture, 2010, 50(4): 386-393.
[10] KYUNG CHOI J, GIL LEE D. Thermal characteristics of the spindle bearing system with a gear located on the bearing span [J]. International Journal of Machine Tools and Manufacture, 1998, 38(9): 1017-1030.
[11] HOLKUP T, CAO H, KOLR P, et al. Thermo mechanical model of spindles [J]. CIRP Annals Manufacturing Technology, 2010, 59 (1): 365-368.
[12] KOLAR P, HOLKUP T. Prediction of machine tool spindles dynamics based on a thermo mechanical model [J]. MM Science Journal, 2010: 166-171.
[13] GREENWOOD J A, WILLIAMSON J B P. Contact of nominally flat surfaces [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1966, 295(1442): 300-319.
[14] COOPER M G, MIKIC B B, YOVANOVICH M M. Thermal contact conductance [J]. International Journal of heat and mass transfer, 1969, 12(3): 279-300.
[15] MCWAID T H, MARSCHALL E. A comparison of elastic and plastic contact models for the prediction of thermal contact conductance [J]. Wrme und Stoffübertragung, 1993, 28(8): 441-448.
[16] BERRY M V, LEWIS Z V. On the Weierstrass Mandelbrot fractal function [J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1980, 370 (1743): 459-484.
[17] MAJUMDAR A, TIEN C L. Fractal network model for contact conductance [J]. Journal of Heat Transfer, 1991, 113 (3): 516-525.
[18] MIKIC B B. Thermal contact conductance; theoretical considerations [J]. International Journal of Heat and Mass Transfer, 1974, 17(2): 205-214.
[19] YOVANOVICH M M. Thermal contact correlations[J]. AIAA Paper, 1982, 81: 83-95.
[20] MAJUMDAR A, BHUSHAN B. Fractal model of elastic plastic contact between rough surfaces [J]. Journal of Tribology, 1991, 113(1): 1-11.
[21] KYLANDER G. Thermal modelling of small cage induction motors [M].Goteborg: Chalmers University of Technology, 1995: 1113.
[22] AVALLONE E A, BAUMEISTER T, SADEGH A. Marks Standard Handbook For Mechanical Engineers:Standard Handbook for Mechanical Engineers [M]. New York: Mcgraw Hill Professional, 2006: 1386.
[23] HARRIS T A. Rolling bearing analysis [M]. New York: Wiley, 1984: 11013.
[24] JONES A B. A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions [J]. Journal of Fluids Engineering, 1960, 82(2): 309-320.
[25] XU M, JIANG S, CAI Y. An improved thermal model for machine tool bearings [J]. International Journal of Machine Tools and Manufacture, 2007, 47 (1): 53-62.

[1] XIE Jie, HUANG Xiao-diao, FANG Cheng-gang, ZHOU Bao-cang, LU Ning. Thermal characteristics and thermal error modeling analysis for motorized spindle of gear grinding machine tool[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 247-254.
[2] CAO Yun, XI Zhan-wen, WANG Jiong, NIE Wei-rong, KONG Nan. Influence of UV-LIGA fabrication error on MEMS omnidirectional inertial switch's performance[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1815-1823.